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Abstract 
This report presents a detailed investigation of a method for fluid-structure interaction (FSI) 
between a flexible plate and viscous compressible channel flow. The FSI of a simplified two-
dimensional model of the soft palate in the human pharynx is considered. Based on an 
arbitrary Lagrangian-Eulerian approach, it uses a high order finite difference method relying on 
summation by parts operators in space and a fourth-order explicit Runge-Kutta method in time 
for the discretization of the compressible Navier-Stokes equations. A multi-block division of 
the computational domain, together with the use of message passing interface, enables a 
parallel solution of the flow field. The motion of the structure is modeled by the classical thin-
plate mechanics governed by the Euler-Bernoulli beam model equations that are solved by the 
Newmark method. By comparison with a FSI experiment, the fluid and structure solvers are 
tested separately aiming to prove the correct performance of each of them, needed to 
accomplish the full validation of the whole FSI method.  
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1. Introduction 

This section aims to give a general idea of the fluid-structure interaction concept and to show 
some real examples where FSI is present. In addition, the main reasons that motivate the 
specialization project are presented. 

 

1.1. FSI background 

The interaction between a deformable structure and a surrounding external or internal fluid 
flow is considered as one of the most important and complex multi-physics problems 
regarding its associated modeling and computational challenges [2]. 

Fluid-structure interaction is governed by the coupling between the physical laws describing 
both fluid dynamics and structural mechanics. The interactions which characterize this multi-
physics phenomenon might be either stable or oscillatory. 

If a body is submerged in a fluid flow, a cycled exchange of mechanical energy takes place 
between the fluid and the structure. The forces exerted by the fluid at the body surface cause 
the motion of the solid, which leads to a movement of the fluid-structure interface [3]. 
Depending on the flow and material properties, the deformations experienced by the structure 
can be small or large, leading to a bi-directionally coupled multi-physics problem. Moreover, 
for fast variations in time even small deformations generate pressure waves in the flow 
causing the typical sound of vibrating structures. 

Even though FSI might not be noticed in everyday life, there is a wide range of cases where this 
phenomenon plays an important role: swimming of aquatic animals, mechanism of natural and 
artificial heart valves, flapping of a flag, movement of trees and plants in the wind, vocal folds 
in the larynx, liquids contained in flexible reservoirs, flow-induced vibrations on aeronautical 
and marine structures, performance of parachutes and airbags etc. 

Therefore, the understanding of fluid-structure interaction can be truly helpful in completely 
different scenarios, from aero-elastic problems such as flutter of the wings of an aircraft to 
medical issues like aneurysms in large arteries. 

  

1.2. Motivation 

Among all the FSI cases that can be found in real life, this specialization project focuses on one 
in particular: Obstructive sleep apnea syndrome (OSAS). 

OSAS is defined as an intrinsic sleep disorder characterized by repetitive episodes of paused 
breathing during sleep. It is caused by the complete or partial obstruction of the upper airways 
which leads to a reduction in blood oxygen saturation [4].  

These obstructions are due to the relaxation of the muscles situated in the back of the throat, 
just at the entrance of the pharynx, where the narrowest part of the upper airways is located. 
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When a person is awake the muscles keep the airway open, while during sleep they relax 
narrowing the mentioned entrance. In that situation, the air passing through can give rise to 
vibrations of the soft palate causing snoring. But there are some cases where the throat closes 
so much that the quantity of air that enters the lungs is not enough. Therefore the brain has to 
re-activate the muscles to open the airway, which normally is associated with a brief 
interruption of sleep. This process can be better understood by looking at Figure 1.1 [5], where 
two pictures of the upper airways enable to see the differences between normal breathing and 
the case of blocked airways.  

 

 

 

 

 

 

 

 

 

 

 

Since the soft tissues of the upper airways are flexible, the whole problem can be modeled by 
FSI between the soft palate and the air flowing through. 

The prevalence of OSAS is estimated to be 2% for women and 4% for men [4]. This sleep 
disorder gives rise to low quality sleep and reduced oxygen consumption, which are some of 
the reasons why it is considered as a major cause for reduced life quality and increased 
mortality in nowadays society. 

Due to its great importance for public health, OSAS is being investigated in a research project 
���v�š�]�š�o������ �^Modeling of Obstructive Sleep Apnea by Fluid-Structure Interaction in the Upper 
Airways (OSAS Mod)�_ [1]. This research project, which has been funded by the Research 
Council of Norway, aims to develop a clinical tool in order to be able to predict the responses 
of surgeries for OSAS patients and to identify the decisive pathophysiological mechanisms for 
the development of OSAS. 

This specialization project is associated with the OSAS Mod research project, in particular with 
�š�Z���� �Á�}�Œ�l�� �‰�����l���P���� �����o�o������ �^Mathematical Modeling of Fluid-Structure Interactions�_, which 
couples the compressible flow field in the pharynx to a model of the deformable structure in a 
two-way explicit form. For that purpose, a FSI method based on an arbitrary Lagrangian-

Figure 1.1. Schematic of the human upper airways 
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Eulerian (ALE) approach has been developed using a high order finite difference method (FDM) 

to solve the coupled fluid and structural problems [6]. 

In this context, the main objective of the specialization project is to validate the mentioned 

existing method for FSI between a flexible plate and viscous compressible channel flow by 

comparison with a FSI experiment. Therefore, it starts dealing with the theory behind FSI in 

section 2 and its numerical solution in section 3, to be able to understand the results obtained 

by numerical simulations in section 4, and compare them with those given as a reference in 

the FSI experiment. 

 

 

2. Mathematical description 

The purpose of this section is to set the general mathematical and physical basis for the entire 

project work.  

Due to the complexity of the whole fluid-structure interaction problem, the theory of both 

fluid and structure is analyzed separately, to enable the study of all the relations and 

interactions between both of them later on.  

After describing the governing equations for both fluid and structure and their interaction in 

the FSI method, the FSI experiment is presented in detail. According to the description of the 

test case, the initial and boundary conditions are defined in order to complete the 

mathematical description of the whole problem.  

 

2.1. Fluid 

The Navier-Stokes equations are derived from the conservation laws for mass, momentum and 

energy. Considering a compressible fluid flow, the resulting mixed hyperbolic-parabolic system 

of equations is known as the compressible Navier-Stokes equations [7] [8]. This system 

presents the governing equations for the case of study. 

The control volume under consideration is denoted by Ω, being time dependent and moving 

with the fluid flow.  

 

 

 

 

 
Figure 2.1. Control volume 
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In Figure 2.1 [7] �š�Z���� �•�Ç�u���}�o�•�� �w�O�� ���v����n refer to the boundary of the control volume and the 
outer unit normal vector, respectively.  

The derivation of the conservation laws leads to the following three equations: 

Continuity equation:  

�&�Œ�}�u�� �š�Z���� ���}�v�•���Œ�À���š�]�}�v�� �o���Á�� �(�}�Œ�� �u���•�•�U�� �š�Z���� �š�}�š���o�� �Œ���š���� �}�(�� �u���•�•�� ���Z���v�P���� �]�v�� �O�� �]�•�� �Ì���Œ�}�X�� �d�Z���� ���}�v�š�Œ�}�o��
volume is generally defined as time dependent, but the same equation applies for a stationary 
control volume [7]. 

�ì
�!��

�!�ç
�@�8�� 
E�ì �é�› 
I�”���@�#���!�� 
L �r 

In (2.1), the symbols t�U���Œ�����v����u are referring to the time, density and velocity vector of the fluid 
respectively. 

Momentum equation:  

From New�š�}�v�[�•�� �•�����}�v���� �o���Á�� �}�(�� �u�}�š�]�}�v�U�� �š�Z���� �š�}�š���o��rate of momentum change in the control 
volume equals the sum of acting forces [7], which are in this case pressure and viscous forces, 
not taking into account volume forces such as gravity. 

�ì
�!�� �›

�!�ç
�@�8
E���� �ì �é�›���› 
I�”���@�#���!�� 
L 
F�ì �L���”���@�#���!�� 
E�ì �Î 
I�”���@�#�����!��  

Pressure is denoted by p, and �• is the viscous stress tensor in (2.2). 

Energy equation:  

From the first law of thermodynamics, the total rate of tot���o�� ���v���Œ�P�Ç�� ���Z���v�P���� �]�v�� �O�� ���‹�µ���o�•�� �š�Z����
sum of the rate of heat added and the rate of work done on the fluid by the acting forces [7]. 
As in the momentum equation, the volume forces are not taken into account, so the acting 
forces are just pressure and viscous forces. 

�ì
�!���¾

�!�ç
�@�8
E�� �ì �é�'���› 
I�”���@�#�!�� 
L 
F�ì �L���› 
I�”���@�#���!�� 
E�ì �:�Î 
I�›�; 
I�”���@�#��
F�ì �—
I�”���@�#�����!�� ���!��  

 

In the equation (2.3) the symbols used to denote the total energy density and the heat flux are 
E and q, respectively. 

The viscous stress tensor �• that appears in (2.2) and (2.3) is defined as: 

�Î 
L �ä�>
¸�� 
E�:
¸�›�;�Í �?
F
�6

�7
�ä
¸ 
I�›�u 

�/�v���~�î�X�ð�•�U���š�Z�����•�Ç�u���}�o���…���Œ���‰�Œ���•���v�š�•���š�Z�������Ç�v���u�]�����À�]�•���}�•�]�š�Ç�����v����I stands for the unit tensor. 

All the three previous equations follow the same pattern, which can be written in a more 
general form as:  

�ì
�! �•

�!�ç
�@�8
E���� �ì �r 
I�”���@�#���!�� 
L �r 

(2.1) 

(2.2) 

(2.3) 

(2.5) 

(2.4) 
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The symbol U stands for the conservative variables vector, while F refers to the flux tensor in 
(2.5). In this case, to be coherent with the three previous equations, the external source 
strength vector is not taken into account. 

In order to get the same equations with this general form, the two new variables introduced in 
(2.5) are defined as follows: 

�• 
L �:�é�á�é�›�á�é�'�;�Í   

�r 
L �r �Ö
F�r �é 

The inviscid flux tensor Fc, and the viscous one, Fv that appear in (2.7) refer to: 

�r �Ö
L �:�é�›�á�é�›���› 
E�L�u�á�:�é�' 
E�L�;�›�;�Í  

 
�r �é 
L �:�r�á�Î�á�Î 
I�› 
E�G�:�º�6�;�;�Í  

In (2.9), the symbols k and T denote the thermal conductivity and the temperature, 
respectively. 

If the flux tensor is differentiable, by using the Gauss theorem it is possible to write the general 
equation in a differential form, which is the one used in the discretization of the equations of 
the problem. 

�! �•

�!�ç

E�º 
I�r 
L �r  

The fluid in this case is air. By using the equations of state for perfect gas and the definition of 
the internal energy, e, it is possible to deduce the following relationship: 

�L
L �:�Û
F�s�;�é�A
L �:�Û
F�s�;�:�é�' 
F
�5

�6
�é���›���6�; 

T�Z�����•�Ç�u���}�o���v���šhat appears in (2.11) is referring to the ratio of specific heats. 

 

2.2. Structure 

For similar structures to the one in the case of study, it is possible to follow the classical thin 
plate mechanics [9] [10]. The Euler-Bernoulli beam model is adopted in order to get the 
governing equations for the motion of the structure. 

Aiming to simplify the problem it is assumed that there is only displacement in the vertical 
direction, so that the structural problem is one-dimensional. The only external force that is 
taken into account is the one due to the pressure difference between both upper and lower 
surfaces of the plate. This 1D simplification is based on the fact that the horizontal 
displacement of the plate is much smaller than the vertical one. So in first approximation it is 
possible to neglect it, even though it exists for a real bending beam. The effects of the 
simplification on the results are expected not to be significant. But it is still necessary to 
discuss the structure solver results taking this into account. 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 
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After these assumptions, the one and only resulting governing equation is the following: 

�/ �S�7
E�%�S�6
E�$�S�ë�ë�ë�ë
L 
F�:�L�è 
F �L�ß�; 
L 
F�¿�L 

In (2.12) the vertical displacement is denoted by w, and the different pressure fields over the 
upper and lower surfaces of the structure are referred as pu and pl, respectively. 

Regarding �š�Z���� �•�š�Œ�µ���š�µ�Œ���o�� �‰�Œ�}�‰���Œ�š�]���•�U�� �D�� �]�•�� �š�Z���� �‰�o���š���[�•�� �•�‰�����]�(�]���� �u���•�•�� ���v���� �]�š�� �]�•�� ���}�u�‰�µ�š������ �]�v�� �š�Z����
following way [10]: 

�/ 
L �é�æ�D 

As shown in (2.13), the specific mass of the plate, M, is equal to the density of the structure�U���Œs 
multiplied by its thickness, h. 

The symbol B denotes the flexural rigidity of the structure. It is related to the Young modulus, 
Es�U�����v�����š�Z�����W�}�]�•�•�}�v���Œ���š�]�}�U���†�U�����•���(�}�o�o�}�Á�• [10]: 

�$ 
L
�¾�Þ���Û�/

�5�6�:�5�?�� �. �;
 

In (2.12) the symbol C is referring to the damping of the structure. In this study the structure is 
considered to have no damping. So the equation can be simplified and be written in the 
following form: 

�/ �S�7
E�$�S�ë�ë�ë�ë
L 
F�¿�L  

This last equation shows how the vertical displacement of the structure is caused by the 
pressure difference between the two surfaces of the plate, and how it is influenced by its 
rigidity and mass 

 

2.3. Fluid-structure interaction 

Once the governing equations for both the fluid and the structure are analyzed in detail 
separately, it is possible to deal with the whole problem of the interaction between both of 
them. 

Typically both fluid and structure are treated in different ways with regard to the topology of 
the mesh used. 

On the one hand, the fluid is commonly studied in an Eulerian reference frame, where the 
specifications about its motion are done at certain points [9].  

On the other hand, the Lagrangian formulation is the most frequently used when studying the 
motion of a structure. Unlike the Eulerian formulation, in this case the mesh is stationary. So 
now the displacements referred to a particular initial configuration are the way of expressing 
the movement. 

(2.12) 

(2.13) 

(2.14) 

(2.15) 
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Both the Eulerian and the Lagrangian formulations can be combined, but large mesh 
deformations make structured grids unfeasible. In the case of study the deformations are 
moderate, so it is possible to use this combination which leads to an arbitrary Lagrangian-
Eulerian approach. As a result of this, the mesh now must adapt itself continuously to the 
boundary of the structure without changing its topology. These modifications have some 
implications on the flow solver, since it has to obey the geometric conservation law (GCL) for 
mathematical consistency, in order to solve problems involving flows on moving meshes [11] 
[12]. 

This ALE approach also affects the governing equations of the fluid presented in (2.10). Now 
that the fluid mesh is moving due to the movement of the boundary of the structure, it is 
necessary to take into account that fluid mesh velocity. So the advection term in the equations 
should now contain the relative velocity [11].  

In terms of modifications to the equations: 

The material derivative which normally is presented as: 

�½

�½�ç

L

�!

�!�ç

E�› 
I�º,  

has to be changed into the following form: 

�½

�½�ç

L

�!

�!�ç

E�:�› 
F �›
Ý�; 
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In (2.17) the subtraction of the velocity of the mesh �›
Ý to the fluid flow velocity means that the 
velocity used in the equation is relative to the mesh. 

Another aspect to take into consideration is how to achieve the coupling between fluid and 
solid mechanics [9]. One possibility is to see it as a sequential coupling, where both the fluid 
and the structure solvers are used one after the other repetitively until the coupling is 
achieved by iteration. In this case if the fluid solver is used first, the computed pressure 
difference is passed on to the structure solver and is iterated until convergence is obtained. 

But the coupling used in the present method is explicit [6]. In order to achieve this direct 
coupling, it is necessary to match boundary conditions from both the fluid flow and the 
structure. The way of proceeding is to match displacement and velocity of the fluid and the 
structure at the boundary [11]. 

�U�Ù
L �S 

�U�6�Ù
L �S�6 

In (2.18), �U�Ù and �U�6�Ù denote the displacement and the velocity of the fluid grid points at the 

interface. By matching them with those from the structure, the problem is coupled and the 
current solution for the pressure difference from the fluid solver is applicable to the structure 
solver. 

(2.16) 

(2.17) 

(2.18) 
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The matching is possible because the grid experiences a boundary fitted re-meshing at every 
time step. In the fluid domain, the positions and velocities of the points are linearly 
interpolated using the values from the points of the structure [11].   

For the no-slip boundary condition at the interface, the horizontal velocity at the displaced 
position must be zero. The no-slip condition in the y-direction is enforced by setting equal both 
the vertical velocity of the fluid at the interface and the velocity of the structure. Since the 
velocities are matched, the use of the same time step for both solutions leads to a matching 
also in accelerations [10]. 

 

2.4. FSI benchmark 

As mentioned before, in order to validate the existing FSI method it is necessary to make a 
comparison with a FSI experiment. There are some standard FSI test cases such as the ones by 
Kalmbach and Breuer (2012) [13], Gomes and Lienhart (2010) [14] and Wong (2011) [15]. All of 
them are useful to make the comparison, but they also have some discrepancies that might be 
relevant enough to make the validation harder. With regard to the flow regime and the 
structure configuration, the one presented by Turek and Hron (2006) [16] seems to be the 
most suitable. So it will be the benchmark for the comparison with the FSI method. 

Its main objective is to set a new benchmark which can be used for validations of methods 
dealing with problems involving fluid-structure interaction [16]. 

As in the present FSI study, the flow regime is laminar [16]. Nevertheless, the fluid is said to be 
incompressible, unlike it is in the present case. The compressibility of the fluid is crucial when 
studying the acoustics of the problem, but in this case it is not relevant for the comparison. So 
as long as the Mach number is low enough, the results thrown by the method considering the 
fluid as compressible should not differ from those in the benchmark where the fluid is 
incompressible. This assumption has to be treated carefully when comparing results. 

The configuration of the test case involves an object with flexible parts fully submerged in a 
channel flow. The FSI leads to self-induced oscillations in the fluid and the structure that affect 
several physical quantities which are the ones to be compared. 

The whole mathematical description of the test case is shown in [16]. The fluid is defined as 
incompressible and Newtonian, and it is governed by the Navier-Stokes equations just as in the 
FSI method, but taking into account here that the fluid is incompressible. 

Nevertheless, for the structure the difference between FSI method and benchmark model is 
notable. The structure in the test case is considered to be elastic, as it is in the present FSI 
model. But the structural model used is different. The structural material is defined by the 
Cauchy stress tensor, determined by the constitutive law for the St. Venant-Kirchhoff material. 
So the use of the governing equations for the structure differs from the Euler-Bernoulli beam 
model used in the present FSI model. Apart from that, it is also remarkable that a simplification 
is made in the present model considering only a one-dimensional displacement of the 
structure, whereas the structural model used in [16] is two-dimensional. These differences in 
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the structural part must be analyzed in detail when making the comparison, to see how the 
results are affected. 

With regard to FSI theory, there are not big differences between what is specified in the 
benchmark and in the present FSI model. The conditions enforced at the interface imply a 
balance of forces between fluid and structure and the no-slip condition for the fluid flow. 

Once the mathematical description is done in the benchmark, the computational domain is 
presented, giving all the necessary dimensions and details of the experiment configuration. In 
Figure 2.2 it is possible to see that the rigid structure is a cylinder. The flexible structure is 
shown to have a finite thickness, and the whole body is contained in a rectangular channel. 
Figure 2.3 presents a detailed view of the body to analyze the cylinder junction with the plate 
and to define the position on the reference points. 

 

 

 

 

 

 

 

 

 

 

 

All the dimensional and positional specifications are summarized in the following table: 

 

 

 

 

 

 

Figure 2.2. Test case computational domain (Fig. from [16]) 

Figure 2.3. Detail of the structural part (Fig. from [16]) 

Table 2.1. Overview of test case geometry parameters (Table from [16]) 
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Both Figure 2.2 and Figure 2.3, as well as Table 2.1 are directly extracted from [16]. However, 
the typo of the x-coordinate of reference point B, which was 0.2 m in [16] instead of 0.15 m, is 
corrected in Table 2.1.  

After setting the geometrical configuration of the test case, some specifications about the 
materials used are made for both the fluid and the structure. 

Regarding the fluid, it is relevant to emphasize that the regime must be laminar. This has an 
implication on the Reynolds number which therefore has to be low enough. Furthermore it is 
necessary to use a fluid capable of promoting deformations on the structure, so there are 
some requisites to take into account when choosing the fluid. Therefore, among several 
possible fluids, the chosen one in [16] is glycerine because of its suitable fluid properties 
regarding the test case requirements. 

At this point it is important to remark that the present FSI model is compatible with gases. 
There are some equations implemented in the present method such as the equations of state 
for perfect gas that should be changed in order to simulate the experiment for glycerine. These 
modifications would mean to re-write parts of the code, which could lead to complications. 
Nevertheless, the present FSI method solves the problem in a non-dimensional way, the 
Reynolds number being the essential non-dimensional input parameter. Therefore it is 
possible to suppose that using the same Reynolds number to simulate the experiment, the 
flow results should not be different either the fluid is glycerine or a gas. 

In other words, although the fluid chosen in the benchmark is glycerine, the present FSI 
method uses air as the fluid, keeping all the non-dimensional parameters coherent with the air 
choice (Prandtl number, speed of sound1 for Mach number, ratio of specific heats etc) but 
imposing the same Reynolds number as in the benchmark. Both test case and simulation 
should be equivalent by the equality of the Reynolds number. But this a point to discuss later 
on when comparing results. 

 

 

 

 

 

 

                                                           
1 The velocities used in the test case are very small compared to the fluid speed of sound, which leads to 
very low Mach numbers. Therefore, the CFL condition forces the time step size for Mach number M to 
be about M times smaller than for incompressible flow. A possible solution would be to artificially 
increase the Mach number by reducing the speed of sound, so that the problems are avoided and the 
simulations are speeded up. Obviously the artificial increase of the Mach number is limited in order not 
to alter the incompressible regime. It is assumed that for a value of the Mach number up to 0.3 the 
results should not get modified. 

Table 2.2. Overview of fluid material parameters (Table from [16]) 
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For the structure another selection between several materials is done. In this case it is 

important that the stiffness of the material must be low enough to allow considerable 

displacements due to the interaction with the fluid. Regarding the specifications, the rubber-

like materials such as polybutadiene and polypropylene are suitable. 

These materials can be used in the present method when only the structural part is being 

tested. Nevertheless when the fluid is interacting with the structure, the choice of the 

structural parameters must be consistent with the choice of the fluid, to get an equivalent 

situation. So if in the experiment the fluid is glycerine and the solid is polypropylene, the 

structure in the method has to be such that the interaction with the air is equivalent to the 

interaction between glycerine and polypropylene.  

That means that the ratio between fluid and structure densities must be respected, and the 

other non-dimensional quantity that has to be conserved from the test case to the FSI method, 

in order to get the equivalence, is the ratio between the flexural rigidity of the structure and its 

specific mass.  

 

 

 

 

 

Both tables presenting the possible choices of materials Table 2.22 and 2.3 are extracted 

straight from [16]. 

To finish with the mathematical description of the FSI benchmark, it is important to mention 

some assumptions in the computation of forces such as lift and drag exerted by the fluid on 

the entire submerged structure. By saying entire structure the purpose is to include both the 

flexible plate and the rigid cylinder. 

 

 

 

 

 

                                                           
2
 Table 2.2 is directly extracted from [16]. But there is a typo in the value of kinematic viscosity for air. 

Instead of 0.015 the value in the table should be 15 for air in standard conditions. This correction was 
done in Table 2.2. 
 

Table 2.3. Overview of solid material parameters (Table from [16]) 

Figure 2.4. Integration path for the force calculation (Fig. from [16]) 
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Looking at Figure 2.4 [16] and following the specification of the way of calculating the forces, 
the integration should be done along the integration path S which results from the union of 
two sub-paths: S1 covers all the surface of the cylinder except for the part in contact with the 
plate, and S2 stands for the surface of the plate not taking into account the part fixed to the 
cylinder. Nevertheless, S0 makes reference to the whole cylinder surface including the part in 
touch with the flexible structure. 

The assumption made in the benchmark states that the integration along the path S and the 
one along the path S0 both lead to the same results [16]: 

�ì �Ì�” ���@�#�Ì 
L �ì �Ì�” ���@�#�Ì�,
  

This last assumption should be treated carefully by analyzing a specific example: For a uniform 
pressure on the cylinder and a velocity equal to zero, a pressure difference between the 
surfaces of the elastic plate is considered. In this case the lift for the cylinder alone would be 
zero, but taking the plate into account would modify that zero lift. Therefore using the 
simplification in (2.19) could lead to incorrect results. 

Nevertheless, to obtain comparable results, the same assumption is made in the present FSI 
method. So only the surface of the cylinder, S0, is considered as the interface between fluid 
and structure when computing the forces. 

 

2.5. Initial and boundary conditions 

To complete the detailed description of the test case, it is necessary to present the initial and 
boundary conditions that are used for the fluid and the structure. 

For the interface between fluid and structure, the no-slip condition is already used in the FSI 
method. This boundary condition must also be enforced at the channel walls described in the 
benchmark. 

For the fluid flow, there is a boundary condition at the inlet of the channel in order to get a 
parabolic velocity profile. The parabolic shape of the profile follows the equation given in the 
benchmark [16]: 

�Q�Ù�:�r�á�U�; 
L �s�ä�w�7
%
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In (2.20), uf stands for the horizontal velocity of the fluid, �7
% refers to the mean inflow velocity 
and H denotes the height of the channel. The x-coordinate of the inlet in (2.20) is set to be zero 
because the origin of the coordinates system is situated in the lower left corner of the channel. 
It is remarkable that the maximum inlet velocity occurs exactly in the middle of the channel, 
while the center of the cylinder is slightly lower. This little difference leads to an asymmetric 
fluid flow that gives rise to the oscillations of the structure interacting with the fluid. 
Otherwise, if the maximum velocity were at the same height as the center of the cylinder, the 
symmetry of the problem would avoid any lift of the structure. 

(2.19) 

(2.20) 
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The boundary condition at the outlet of the channel enforces that the gauge pressure must be 
zero.  

�L�"�:�.�á�U�; 
L �r     

The symbols p�[ and L in (2.21) stand for the gauge pressure and the length of the channel, 
respectively. 

Regarding the initial conditions for the fluid flow, the initial horizontal velocity is set to be zero 
in the whole fluid domain except for the inlet, where the x-component of the velocity profile is 
determined by the boundary condition (2.20). The y-component of the velocity is initially zero 
everywhere. Initial pressure and density are set to their stagnation values. 

Moreover, it is recommended in the benchmark to use a starting procedure (for unsteady test 
cases) in order to get a smooth increase in time of the velocity profile at the inlet [16]. 
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(2.22) shows that the velocity profile at the inlet starts from zero at t=0 and ends with the 
parabolic velocity profile described in (2.20) at t=2. 

For the structure there are two boundary conditions. For the leading edge of the flexible plate, 
the boundary condition sets a clamped configuration (the leading edge of the structure is fixed 
to the cylinder), so both the vertical displacement and the velocity of the structure are equal 
to zero at this point [10]. 
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L �r 
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The variable w1 that appears in (2.23) refers to the vertical displacement of the leading edge of 
the flexible plate at the height of the center of the cylinder. The index 1 denotes the grid point 
x1. 

For the trailing edge of the structure the boundary condition corresponds to a free 
configuration, being the shear force and the bending moment equal to zero [10]:  
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In (2.24) the index N refers to the last grid point of the flexible structure, which is situated at 
the trailing edge. 

(2.21) 

(2.22) 

(2.23) 

(2.24) 
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The initial condition for the structure is already imposed by the geometry parameters of the 
benchmark presented in Table 2.1. The trailing edge of the flexible plate is called reference 
point A, and it is specified that the height of reference point A at time equal zero is the same 
as the height of the center of the cylinder. Since the leading edge of the plate is fixed to the 
cylinder at the height of its center, this means that at the initial time the position of the 
structure is horizontal, or in other words, there is not initial displacement for the flexible 
structure.  

�S�Ü�:�P
L �r�; 
L �r�������������á�‹
L �s�á�å���á�� �ä��   

The subscript i in (2.25) denotes the index of grid point xi. 

Once the governing equations and the boundary and initial conditions for the whole problem 
are defined, its mathematical description is completed, and it is ready to be discretized. 

 

2.6. Non-dimensional perturbation form 

As it was mentioned before, the FSI method solves the equations in a non-dimensional form. 
The independence on dimensions makes it easier to carry out a specific simulation. For 
example in this case, there is only need to change a couple of non-dimensional parameters for 
the fluid and the structure and the whole test case can be simulated. 

In the following, it is shown how the main flow and structural variables are made non-
dimensional.  

For the fluid motion, the chosen reference values are stagnation values: �Œ0 for the density, c0 
for the speed of sound and L as the characteristic length scale of the domain. 

In this case both reference values for density and speed of sound correspond to the fluid used 
in the FSI method. As it was discussed above, the fluid is assumed to be air instead of glycerine, 
so the reference values are the ones from air to be consistent with the assumption. 

For the characteristic length scale of the domain one should look at the definition of the 
Reynolds number done in the benchmark [16].  
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The parameters used in the definition of the Reynolds number are the diameter of the cylinder 
d, the mean inflow velocity �7
% and the kinematic viscosity of the fluid �†f. The Reynolds number 
has to be the same in the FSI method in order to mimic the experiment. So the characteristic 
length scale of the domain is set to be equal to the diameter of the cylinder. 

So using the three reference values for density, velocity and length it is possible to do the non-
dimensionalization of all the physical quantities involved in the problem. By developing the 
transformation of the flow equations with the choices of reference values, it is deduced that 
the continuity, momentum and energy equations, as well as the equations of state, have the 
exact same form in both dimensional and non-dimensional formulations. This means that the 

(2.25) 

(2.26) 
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flow equations do not need to be changed, it is just necessary to use the non-dimensional 
quantities with the same equations. 

Moreover the present FSI method solves the problem in a perturbation formulation. The 
conservation laws of mass, momentum and energy are expressed in terms of the changes of 
the conservative variables, the stagnation values being the references. The same perturbation 
formulation is extended to the equations of state as well. 

As an example of this formulation, it is easy to see the definition for the density: 
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In (2.27) the index 0 denotes the reference value and the apostrophe refers to the 
perturbation form. Therefore the definition of the perturbation quantity is the difference 
between the real value and the reference one. The same formulation is done for the rest of 
the conservative variables in order to get the same governing equations but in a non-
dimensional perturbation form. 

As for the flow equations, the structure governing equations must be expressed in a non-
dimensional formulation as well. The choice for the reference quantities remains on the 
structural part, being the stagnation density, speed of sound and the characteristic length scale 
of the domain the ones used to make non-dimensional the rest of the physical quantities. 

Going through the formulation of the equations it results to be, as it was in the fluid part, that 
the transformed governing equation for the structure has exactly the same form in both 
dimensional and non-dimensional formulations.  Therefore, there is no need to change the 
equation. But the specific mass, flexural rigidity and pressure difference must be used in their 
non- dimensional form to get the results non-dimensional as well. 

 

 

3. Numerical models 

Once all the details of the mathematical description of the whole problem are determined, the 
process must continue by getting everything prepared for the numerical computations. In 
order to do so, it is necessary to describe the space and time discretizations used in the FSI 
method for both the fluid and the structure solver. 

In this section all the numerical aspects related to the FSI method are treated, and some 
explanations about the numerical models for fluid and structure are given. Then the 
implementation of the fluid-structure interaction is studied by analyzing its algorithm. 

Several modifications on the computational domain need to be done in order to simulate the 
experiment using the FSI method. There are also some changes necessary related to the block 

(2.27) 
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structure. After going through all the numerical parts of the problem, by the end of this section 
the FSI method will be fully outlined. 

 

3.1. Fluid 

The computational model of the fluid flow solver works with the equations in a non-
dimensional perturbation formulation. The reason for the perturbation form comes from the 
fact that the difference between the values of a physical variable, e.g. pressure, in one grid 
point and its neighbors might get almost imperceptible. By using the perturbation formulation 
instead of the pressure values, only the pressure perturbations are used, being able to avoid 
cancellation errors in the values of the pressure difference between neighbor grid points. 

For the discretization of the governing equations used in the fluid solver, a coordinate 
transformation needs to be done. The coordinates x and y from a physical domain are 
transformed into a computational domain where the coordinates are �‡�����v�����{�X The time t is also 
�š�Œ���v�•�(�}�Œ�u�������]�v�š�}���•�X 

�/�v���}�Œ�����Œ���š�}�����}���•�}�U���š�Z�����v���Á�����}�}�Œ���]�v���š���•���‡�����v�����{�����Œe defined as functions of the old coordinates 
���v���� �š�]�u���� �~�Æ�U�Ç�U�š�•�X�� �d�Z���� �v���Á�� �š�]�u���� �•�� �]�•�� �•���š�� �š�}�� ������ ���‹�µ���o�� �š�}�� �š�Z���� �}�o���� �š�]�u���� �š�X��The transformation of 
coordinates is fully developed and the time derivative of the Jacobian determinant is given by 
the geometric conservation law [6] [12]: 
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Then the Jacobian determinant of the transformation J, is integrated in time using the classical 
fourth order explicit Runge Kutta method. Once the discretization of the equations is done, the 
domain has to be discretized as well. At this point it is useful to remind what the FSI method is 
originally made for, by looking at the original computational domain for the case in the upper 
airways. From that domain and with the same logic, the new computational domain for the 
case of the benchmark has to be created. 

Figure 3.1 [11] shows the multi-block structured grid representing the simplified geometry in 
the upper airways.  

 

 

 

 

 

 

 

(3.1) 

Figure 3.1. Original computational domain for the case in the upper airways (Fig. from [11])  
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The first thing that needs to be modified is the shape of the fixed structure, which in the FSI 
experiment is a cylinder instead of a plate. This change has implications both on the topology 
of the grid surrounding the fixed structure and on the block structure. Regarding the mesh 
surrounding the cylinder, now the grid lines have to be able to adapt themselves to the shape 
of the cylinder, being similar to those surrounding the flexible plate but independent of time 
since the cylinder is not moving. With the new configuration there is a need of two more 
blocks right before the cylinder, in order to get the upstream fluid flow, making a total of eight 
blocks. 

 

 

 

 

 

By comparing both Figure 3.1 and Figure 3.2 some differences are clear. The increase in the 
total amount of blocks from six to eight, and the change in the shape of the structure were 
already mentioned. But they also cause some changes in the inter-block communication. That 
is due to the increase in the number of blocks, which leads to a new communication system 
involving the new blocks. But the mechanism of inter-block communication is unchanged. In 
both figures the red lines represent the boundaries between blocks where the communication 
is allowed and the arrows stand for the double direction of each inter-block communication. 

The inter-block communication is achieved by using the message passing interface, such that 
each block is assigned to a single processor, enabling a parallel solution of the fluid flow field. 
Therefore some ghost points are indispensable for the sending and receiving information 
between neighbor blocks at the boundaries where the inter-block communication is allowed. 

 

 

 

 

In Figure 3.3 [11], the red and green dots are internal points in the left and right blocks, 
respectively. The white dots are ghost points overlapping the internal points in the other 
blocks. The arrows indicate the direction of data transfer between the blocks. At a block 
boundary, the seven-point stencil of the sixth order central finite difference method needs 
three ghost points on either side. 

By implementing in the present FSI method all the commented changes involving the shape of 
the fixed structure, the multi-block structure and keeping the MPI communication mechanism 
in the specified inter-block boundaries, the new computational domain valid for the 
benchmark case is obtained, cf. Figure 3.4. 

Figure 3.2. Schematic of the block structure for the FSI experiment   

Figure 3.3. Schematic of points overlapping along a line (Fig. from [11])   
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In Figure 3.4 it is possible to see the new distribution of the eight blocks contained in the 
computational domain, as the different colors of the grid points represent different blocks. The 
grid lines in blocks surrounding the cylinder are now adapted to its shape. For doing so, with a 
given number of grid points the grid spacing along the cylinder surface is chosen to be 
constant, while in the vertical direction an interpolation is needed to get the appropriate 
shape. The length scales of the domain have been made non-dimensional by using the 
diameter of the cylinder as the characteristic length scale. Analyzing the figure carefully it is 
possible to see that the center of the cylinder is not exactly in the middle of the channel but at 
height 2.0, a fact that avoids symmetry and gives rise to the oscillating motion of the flexible 
structure interacting with the fluid. It is also possible to see how the elastic structure is treated 
as a thin plate with no thickness, unlike it is in the benchmark.  

The grid size is 253 x 41, i.e. 253 and 41 grid points in the x- and y-directions, respectively. In 
the blocks that are not containing the cylinder, the grid spacing is equidistant in both 
directions. The number of grid points, the grid spacing and the angle of grid lines, they all have 
direct implications on the results.  So they will be analyzed in detail in section 4 when treating 
the obtained results.     

The fluid computational model is based on a sixth order finite difference discretization in 
space, where it is important to remark the use of summation by parts (SBP) operators. These 
finite difference operators aim to mimic integration by parts, being the use of SBP operators a 
mathematical tool to ensure the stability and accuracy of the high order scheme. Physically 
this is describing that the final energy must be lower than the initial one, so that the whole 
process is stable in terms of energy. 

As indicated before in Figure 3.3, for the standard sixth order central finite difference method 
the stencil is containing seven points. In case a boundary between two different blocks is 
allowed to communicate, the communication requires an overlap of three points at both sides 
of the boundary in order to achieve the inter-block communication which enables a parallel 
solution for the fluid flow field. 

Figure 3.4. Computational domain for the simulations   
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For the discretization in time, the method used is the classical fourth order explicit Runge-
Kutta method. Furthermore at the end of each time step the use of a sixth order explicit filter 
helps suppressing possible undamped modes. 

The scheme used in the FSI method presents two conditions that must be respected in order 
to avoid numerical problems related to the stability of the scheme [17]. 
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In the general stability conditions shown in (3.2) the symbol u refers to x-velocity component, 
v to y-velocity component, c to speed of sound and �4�š�U �4�Æ�� ���v���� �4�Ç to time step size and grid 
spacings, respectively. The symbol �† denotes the kinematic viscosity multiplied by a factor as 
shown in (3.3) [17]�U���Á�Z���Œ�����R���]�•���š�Z�������Ç�v���u�]�����À�]�•���}�•�]�š�Ç�U���Œ���š�Z���������v�•�]�š�Ç�U���v���š�Z�����Œ���š�]�}���}�(���•�‰�����]�(�]�����Z�����š�•��
and Pr denotes the Prandtl number. 
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3.2. Structure 

As in the fluid part, the numerical model for the structure works with the governing equation 
in a non-dimensional formulation. With regard to the space discretization of the structure it is 
considered as infinitely thin, unlike in the benchmark where it has a finite thickness.  

 

 

 

 

 

 

 

 

 

 

It is shown in Figure 3.5 that just a grid line at height y=2.0 is representing the whole flexible 
structure, containing the grid points at the interface which are also considered as part of both 

Figure 3.5. Detail of the structure in the computational domain   

(3.3) 

(3.2) 
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the upper and lower blocks of the fluid domain. The whole structure including the cylinder and 
the plate is considered as a wall so that that the communication through it is not allowed. That 
is shown in Figure 3.2 where it is possible to observe how the structure avoids the inter-block 
communication between blocks 3-4 by the cylinder and blocks 5-6 by the plate. 

Moreover it is important to remind that a simplification was made for the displacement of the 
structure, assuming that the only possible movement of the plate is vertical, which leads to a 
simplified one-dimensional problem. 

In terms of space discretization of the governing equation, a central finite difference scheme is 
used for the space derivative in (2.12). 
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Regarding the boundary conditions for the flexible structure at the leading and trailing edges 
presented in (2.23) and (2.24), respectively, the space discretization using the finite difference 
method enables to deduce the following relationships between the closest grid points to the 
leading and trailing edges: 
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By using the forward finite difference method at the leading edge in (3.5), the relationship 
between the vertical displacements of the two first grid points of the flexible structure is 
known. The third grid point of the structure starting from the leading edge uses these two 
values from (3.5) to be able to compute (3.4). Also for the last grid point of the structure it is 
necessary to develop the boundary conditions at the trailing edge from (2.24). 
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Once the relationships between the displacements of the two last grid points of the structure 
are known, it is possible to compute the displacement at the trailing edge using (3.4), 
completing the space discretization of the governing equation for all grid points belonging to 
the structure.  

For the time discretization of the governing equation, it is necessary to solve the transient 
dynamics of the structure. The Newmark time integration method is used in order to get the 
dynamic system modelled, achieving stability and second order accuracy by the use of this 
scheme [18]. 

The time derivative terms in the governing equation for the structure (2.12) are discretized 
�µ�•�]�v�P���š�Z�����E���Á�u���Œ�l���u���š�Z�}���[s parameters: 
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In both equations (3.7) and (3.8�•�� �]�š�� �]�•�� �‰�}�•�•�]���o���� �š�}�� �•������ �Z�}�Á�� �š�Z���� �‰���Œ���u���š���Œ�•�� �v�� ���v���� �t�� �(�Œ�}�u�� �š�Z����
Newmark method play a role, leading their choice to a wide range of different solutions. 
Therefore the value of these two parameters must be carefully chosen. 

�Ú
L
�s
�v
 

�Û
L
�s
�t
 

�d�Z���� �À���o�µ���� �}�(�� �š�Z���� �‰���Œ���u���š���Œ�� �t�� �•�Z�}�Á�v�� �]�v�� �~3.9) is commonly used, since it yields to a constant 
average acceleration method. �d�Z���� ���Z�}�]������ �}�(�� �v��in (3.9) is simply in order to avoid numerical 
damping which can appear with a different value of this parameter [19].   

 

3.3. Fluid-structure interaction 

The computational models for the fluid and the structure are already presented, but since this 
whole project work is about the interaction between both of them, it is clear that the 
numerical model of the problem must include a detailed explanation of how the fluid-structure 
interaction is implemented in the existing method.  

The FSI algorithm has to be analyzed carefully, and some explanations of the internal part of 
the method are necessary to be able to understand how it works and uses a multi-block 
communication to achieve a parallel solution. 

For a general problem involving FSI, the algorithm must start by giving the initial values for 
both the fluid and the structure, so that the initial mesh for the fluid can be generated based 
on the initial configuration of the structure. Once the entire initial configuration of the 
problem is well defined, the process for the first time step will be repeated at every time level 
until the final time is reached. 

This mentioned process starts with the computation at the interface of the stress coming from 
the fluid flow, which enables to calculate the pressure difference �4�‰��at the flexible plate at 
that specific time level. At this point the fluid solver advances one step in time to get a 
preliminary state of the fluid flow for the next time level. Then the structure solver starts to 
work taking the �4�‰��information from the old time level in order to compute the displacement 
of the structure for the new time level. 

Now that the displacement of the structure is known, the fluid mesh and the velocities of its 
grid points must be recalculated based on the solution given by the structure solver. Once the 
fluid grid is updated, the same process is repeated from that time level on until the final time 
step [6]. 

For an easier comprehension of the FSI algorithm described above it is useful to see it in a 
schematic way. The Figure 3.6 taken from [11] makes it possible. 

(3.9) 

(3.8) 
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After getting a general idea of how the FSI is implemented in the method, its numerical code 
must be analyzed in order to fully understand the whole mechanism of the program, and to be 
able to know where to make modifications if necessary for the development of the project 
work. 

The method is written in a very extensive FORTRAN code structured as a main program and 
calls for a big list of subroutines, each of them aiming to a particular purpose. Among all the 
subroutines, some of them are dedicated to enabling the MPI for the inter-block 
communication and the parallel solution, while others establish all the necessary parameters 
to get the correct domain. There are also subroutines thought to ensure the stability of the 
scheme and the list goes on until the last detail of the method is covered. 

Just after a detailed analysis of the code it is possible to make the necessary modifications to 
simulate the FSI experiment using the existing method. The block structure, the computational 
domain, the fluid mesh and the initial and boundary conditions among others, must be 
changed in order to get the existing method ready for the simulation and start getting results 
for the comparison with the FSI benchmark.  

 

 

4. Results  

After presenting the theoretical background of the fluid-structure interaction problem and its 
numerical solution by a detailed mathematical description and the definition of the numerical 
models, the whole simulation process is ready to be started. The numerical results obtained 

Figure 3.6. Schematic of the FSI algorithm of the method (Fig. from [11])    
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from the FSI method in this section have to be compared with those given as a reference in the 
FSI experiment. For doing such a comparison the simulation process must be conducted 
following carefully all the guidelines specified in the benchmark.  

The reference results from the FSI experiment are obtained for a fully developed flow during 
one entire period of oscillation. Some of the quantities that must be computed for comparison 
are the displacement of the trailing edge of the structure or the lift and drag forces on the 
whole surface of the structure due to the interaction with the fluid. 

When giving time dependent results, the line of action is to specify mean value, amplitude and 
frequency calculated for one whole period of oscillation. Also for the time dependency a plot 
of the results is required to analyze their development in time. 

In the benchmark all the tests are performed using several different levels of refinement and 
after this grid-refinement study, an almost grid-independence of the given reference results is 
remarked. A similar study is carried out regarding the time step size, using several of them for 
each test case to analyze what effects they have on the results. 

 

 

 

 

 

 

  

 

 

 

 

Both Figure 4.1 and Table 4.1 are directly extracted from [16]. At this point it is important to 
say that the mesh type shown in Figure 4.1 differs from the one used in the FSI method 
presented in Figure 3.4. Unlike the structured grid of the present method, the mesh from the 
FSI benchmark shows an irregular pattern for the cells surrounding the whole structure, which 
enables to accumulate a large number of grid points close to the body for a higher accuracy of 
the results. The grid shown in Figure 3.4 might present some problems of convergence due to 
the big jumps in cell sizes and angles presented at both sides of the cylinder. This fact has to be 
taken into account when presenting the results of the fluid solver. 

In the benchmark the test cases of study are divided into three different parts. The reason for 
that organization is to carry out the validation of both the fluid and structure solvers 

Figure 4.1. Example of a coarse mesh from the FSI benchmark (Fig. from [16])  

Table 4.1. Grid refinement levels from the FSI benchmark (Table from [16]) 
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separately first, to finish with the validation of the whole FSI method afterwards. Therefore, 
the structural test cases, called CSM tests in the benchmark, are presented first. Right after, 
the fluid solver is checked for the CFD tests. Finally the FSI tests consider the cases where the 
interaction between fluid and structure is studied. 

 

4.1. CSM Tests 

The purpose of these tests is to validate the structure solver used in the present FSI method. In 
order to do so, the flexible part of the structure must be isolated forgetting about the 
surrounding fluid. This enables to test the structural solver alone and avoids fluid-structure 
interaction computations that are unnecessary for this specific case. 

The motion, which is caused by the pressure difference in the normal FSI case, is now due to 
the gravitational force that must be included in the governing equation for the structure. 
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The governing equation for the CSM tests (4.1) is the same as the governing equation for the 
structure presented in the mathematical description (2.15) with the only difference of the 
external force, which is changed from the pressure difference between upper and lower 
surfaces of the plate to the gravitational force. The symbol g in (4.1) denotes the absolute 
value of the gravitational acceleration in the vertical direction, and the new term on the right 
hand side of the equation represents the gravity force per unit area which now is counted at 
every grid point of the flexible structure. 

Three different partial tests are defined in the benchmark for the structural part: Test CSM3 
simulates a time dependent case starting from the initial configuration of the flexible plate. 
The two other tests CSM1 and CSM2 are steady state solutions3. 

The dimensional and non-dimensional structural parameters needed for the simulation of each 
case are given in the benchmark [16].  

 

 

 

 

  

It is not specified in [16] but the absolute value of the gravitational acceleration used in the 
tests is clearly artificial, not corresponding to the real value of this acceleration on earth. 

                                                           
3 The present method computes the time dependent solution while tests CSM1 and CSM2 represent the 
steady state solutions. For the comparison in those cases, the steady state solution will be approximated 
by the mean value of the time dependent solution from the present method. 

(4.1) 

Table 4.2. Overview of parameters for structural tests (Table from [16]) 
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Looking at (4.1) it is possible to see that the input parameters that the method needs for the 
simulation are the specific mass and the flexural rigidity of the flexible structure. By using the 
relationships presented in (2.13) and (2.14) with the value for the thickness of the plate 
specified in Table 2.1, the necessary parameters M and B can be calculated for each of the 
structural test cases. They are presented in Table 4.3. 

 

Par. CSM1 CSM2 CSM3 

M�B
�i�e

�k �.�C 20 20 20 

B�B
�i�e
I�k �.

�q�.
�C 1.11 4.44 1.11 

 

As explained in the section of the non-dimensional formulation, the governing equation for the 
structure in the CSM tests has the same form either it is used in a dimensional or non-
dimensional way. In this case, since the structure is isolated, the dimensional input parameters 
are used, so the results will be dimensional as well and fully comparable with those given as 
reference. 

For the grid refinement study the simulations are done for three different levels of refinement 
like in the benchmark. The present results either correspond to the coarse, medium or fine 
grid, the number of grid points along the structure being 51, 101 and 201 respectively. 

The different time steps used in the simulations are exactly the same as in the benchmark �~�4�š 
equal to 0.02 s, 0.01 s and 0.005 s), so that the time step influence is comparable. 

The first test case to be analyzed is CSM3, to do the time development study first, and then the 
two steady cases follow. 

 

4.1.1. CSM3 

In order to have a general idea of how the structure moves, the following two figures show the 
displacement of the whole flexible structure for the coarse grid using a time step equal to 0.02 
seconds.  

The displacement shown in Figure 4.2 corresponds to the time increment between t=0 s and 
t=2 s. 

 

 

 

 

 

Table 4.3. Input parameters for structural tests 
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In Figure 4.2 it is possible to observe the oscillating movement of the whole flexible plate 
caused by the gravitational force that was added specifically for the CSM tests. 

To be able to see the displacement development in time in more detail, Figure 4.3 shows only 
the first oscillation of the whole simulation, since it is then when the maximum displacement 
(0.148136 m) takes place. 

 

 

 

 

 

 

 

 

 

 

 

In Figure 4.3, the time increment of the displacement shown is 1 second. The downward and 
upward displacements of the plate are represented by the green and blue lines, respectively. 

Figure 4.2. CSM3 Displacement of the whole structure (every 2 seconds)   

Figure 4.3. CSM3 Displacement of the whole structure: First oscillation (1 second)   
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The results that are given as reference in the benchmark are both the horizontal and vertical 
displacements of the trailing edge of the structure, or as defined in Table 2.1, the reference 
point A. Nevertheless it is important to remark that the 1D simplification assumed for the 
Euler-Bernoulli beam model yields only one governing equation for the vertical direction, so 
the only displacement computed by the present structure solver is the vertical one. Therefore, 
all the comparisons between the results and the reference values are made only for the 
vertical displacement w. 

The plots in Figures 4.4-4.12 represent the development in time of the computed vertical 
displacement of the trailing edge for ten seconds. The red dots refer to the results of the 
present structure solver, and the blue line denotes the reference values given in the 
benchmark [16]. 

All the results for the three different time steps using each of the three levels of grid 
refinement studied are presented together below, in order to easily compare them and be 
able to discuss the grid refinement and time step studies. 
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Coarse: 51 grid points  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. ���^�D�ï�W���4�š���A���ì�X�ì�î���•�X�����}���Œ�•�����P�Œ�]�� 
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Medium: 101 grid points 

 

 

 

 

 

 

 

 

 

 

 

Fine: 201 grid points 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. ���^�D�ï�W���4�š���A���ì�X�ì�î���•�X���D�����]�µ�u���P�Œ�]�� 

Figure 4.6. ���^�D�ï�W���4�š���A���ì�X�ì�î���•�X���&�]�v�����P�Œ�]�� 
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�x �4t=0.01 s 
 
Coarse: 51 grid points 

 

 

 

 

 

 

 

 

 

 

 

Medium: 101 grid points 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. ���^�D�ï�W���4�š���A���ì�X�ì�í���•�X�����}���Œ�•�����P�Œ�]�� 

Figure 4.8. ���^�D�ï�W���4�š���A���ì�X�ì�í���•�X���D�����]�µ�u���P�Œ�]�� 
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Fine: 201 grid points 

   

 

 

 

 

 

 

 

 

 

 

�x �4�š�A�ì�X�ì�ì�ñ���• 
 
Coarse: 51 grid points 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9. ���^�D�ï�W���4�š���A���ì�X�ì�í���•�X���&�]�v�����P�Œ�]�� 

Figure 4.10. ���^�D�ï�W���4�š���A���ì�X�ì�ì�ñ���•�X�����}���Œ�•�����P�Œ�]�� 
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Medium: 101 grid points 

  

 

 

 

 

 

 

 

 

 

 

 

Fine: 201 grid points 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11. ���^�D�ï�W���4�š���A���ì�X�ì�ì�ñ���•�X���D�����]�µ�u���P�Œ�]�� 

Figure 4.12. ���^�D�ï�W���4�š���A���ì�X�ì�ì�ñ���•�X���&�]�v�����P�Œ�]�� 
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The numerical results corresponding to all the plots presented in Figures 4.4-4.12 above are 
arranged and summarized in Table 4.4. As commented at the beginning of the results section, 
the time dependent results must be given specifying the mean value, the amplitude and the 
frequency (appears between brackets in the tables of time dependent results). The mean value 
is determined as the average of the maximum and minimum values of the last period of the 
oscillations. The difference between those two values is divided by two in order to compute 
the amplitude. Finally the frequency is determined as the inverse of the period, which is 
computed as the difference between the end and start time values of the last period of the 
oscillations. 

  

  CSM3: Vertical displacement of the trailing edge [10E-3 m] 

  
Grid 

refinement 
Turek-Hron [16] Structure solver 

�4�š = 0.02 s 
Coarse �>�ò�ð�X�î�ó�í���F���ò�ð�X�ñ�õ�ñ�€�í�X�ì�õ�ñ�ò�• �>�ó�î�X�õ�ð�õ���F���ó�ï�X�õ�ó�ì�€�í�X�ì�ì�ì�ì�• 

Medium �>�ò�ð�X�ï�ñ�î���F���ò�ð�X�ò�ó�õ�€�í�X�ì�õ�ñ�ò�• �>�ó�í�X�ï�ì�ò���F���ó�í�X�î�ò�ï�€�í�X�ì�î�ì�ð�• 
Fine �>�ò�ð�X�ï�ó�í���F���ò�ð�X�ò�õ�ñ�€�í�X�ì�õ�ñ�ò�• �>�ò�õ�X�ì�õ�ï��±69.929[1.0638] 

�4�š = 0.01 s 
Coarse �>�ò�ð�X�ó�ð�ð���F���ò�ð�X�õ�ì�ó�€�í�X�ì�õ�ó�ô�• �>�ó�î�X�ò�ï�õ���F���ó�ð�X�î�ò�ñ�€�í�X�ì�î�ì�ð�• 

Medium �>�ò�ð�X�ó�ò�ñ���F���ò�ð�X�õ�ð�ò�€�í�X�ì�õ�ó�ô�• �>�ó�í�X�î�ñ�î���F���ó�í�X�î�ð�ò�€�í�X�ì417] 
Fine �>�ò�ð�X�ó�ò�ò���F���ò�ð�X�õ�ð�ô�€�í�X�ì�õ�ó�ô�• �>�ò�õ�X�õ�ô�õ���F���ò�õ�X�õ�ñ�ð�€�í�X�ì582] 

�4�š = 0.005 s 
Coarse �>�ò�ï�X�ñ�ð�í���F���ò�ñ�X�ì�õ�ð�€�í�X�ì�õ�õ�ñ�• �>�ó�ï�X�ò�ô�ò��± 74.671[0.9804] 

Medium �>�ò�ï�X�ñ�õ�ð���F���ò�ñ�X�í�ñ�ð�€�í�X�ì�õ�õ�ñ�• �>�ò�õ�X�ó�ð�ó���F���ó�í�X�ï�ð�î�€�í�X�ì�ñ�î�ò�• 
Fine �>�ò�ï�X�ò�ì�ó���F���ò�ñ�X�í�ò�ì�€�í�X�ì�õ�õ�ñ�• �>�ò�ô�X�ò�ì�ô���F���ò�õ�X�ó�õ�ï�€�í�X�ì�ò�õ�ñ�• 

 
Reference �>�ò�ï�X�ò�ì�ó���F���ò�ñ�X�í�ò�ì�€�í�X�ì�õ�õ�ñ�• 

  

In Table 4.4 all the numerical results of the structure solver are presented, including the three 
levels of refinement for each of the three different time steps. The numerical results of the 
benchmark are given as well. It is important to remark that the present grid sizes and the ones 
used by Turek and Hron cannot be compared directly, since only the total number of elements 
and degrees of freedom are given in [16].  

It is deduced from Figures 4.4�t4.12 and Table 4.4 that the results obtained by the present 
structure solver show larger (in absolute value) mean values and amplitudes of the oscillations 
than the results extracted from the benchmark. With regard to the frequencies of the 
oscillations, they are smaller than in the benchmark results, or in other words, the periods of 
oscillations are larger for the present structure solver results. 

In order to find an explanation of these results it is convenient to remind the 1D simplification 
made for the equations of the present structure solver. For simplifying the structure 
movement to a vertical displacement there are some implications on the results. When a real 
beam is bending each of its points is suffering both a vertical and a horizontal displacement, 
and this movement in the horizontal dimension is being neglected in the method due to the 1D 
simplification. Therefore if this horizontal displacement is not taken into account, as in the 
present structure solver results, the  absolute value of the vertical displacement gets increased 

Table 4.4. CSM3 results: Time step and grid refinement studies 
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and so do its mean value and amplitude. The effect is the same for the period which is bigger 
for those increased displacements, what means that the frequencies are smaller. 

To carefully analyze the size of the errors in the structure solver results it is useful to look at 
the first oscillations of the plots. In Figure 4.13 it is possible to see in detail the first two 
seconds of simulation of the case shown in Figure 4.12, in which the smallest time step and the 
finest grid are used. 

 

 

 

 

 

 

 

 

 

 

The real differences between the results from the structure solver and the benchmark can be 
observed by analyzing the first oscillation. It is shown there how the trailing edge is moving 
with larger absolute values of mean value and amplitude, which lead to longer periods of 
oscillations according to the numerical results. When time goes on, the slightly bigger period 
appears for each of the oscillations and therefore, for longer times the plot of the structure 
results gets delayed with respect to the reference results plot as shown in Figures 4.4-4.12. 

Regarding the grid refinement study in Table 4.4, the structure solver results show a tendency 
of getting closer to the reference values when the number of grid points increases. In other 
words, the finer the grid gets, the higher the accuracy of the results is. Once this obvious effect 
of the grid refinement is confirmed, it is possible to compare both refinement studies from the 
structure solver and the benchmark. The influence of the refinement level is shown to be 
much bigger in the structure solver results than in the reference results where, as it is claimed 
in the benchmark, the results are almost grid independent. 

The reason for that bigger grid refinement dependence of the structure solver results is the 
low number of grid points used. Even though three refinements are done, the highest number 
of grid points is probably not as high as it is in the benchmark. That means that if starting from 
the current finest grid, three more grid refinements are done (401, 801 and 1601 number of 
grid points, respectively), then the structure solver results will show less dependence on the 
number of grid points. Keeping on this methodology, the results at the end are expected to 
tend to grid refinement independence, but this is something to be shown. 

Figure 4.13. �&�]�Œ�•�š���}�•���]�o�o���š�]�}�v�•���}�(�����^�D�ï�W���4�š = 0.005 s. Fine grid 
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The time step study evidences similarities between the present structure solver results and 

those from the benchmark. It is possible to see in Table 4.4 how the size of the time step used 

affects the results obtained. Starting from the largest time step and reducing it repetitively 

leads to small variations of the results. The given reference value corresponds to the one 

obtained using the smallest time step size. 

Since the CSM3 test case is not describing a steady state but a stable state for oscillating 

solutions, this dependence on the time step is expected. When the level of refinement is 

already high enough, as it is in the benchmark, a change in the size of the time step has a 

bigger influence on the results than a grid refinement. 

Aiming to evaluate the accuracy of the structure solver, the relative errors of the 

displacements must be computed after the comparison of the structure solver results with the 

ones given as a reference in the benchmark. 

 

 
CSM3: Vertical displacement of the trailing edge. Relative errors (%) 

  Grid refinement Mean value  Amplitude Frequency  

Δt = 0.02 s Fine 8,62 7,32 -3,25 

Δt = 0.01 s Fine 10,03 7,36 -6,24 

Δt = 0.005 s Fine 7,86 7,11 -2,73 

 In Table 4.5 the relative errors for the mean value, amplitude and frequency of the oscillating 

displacement are presented. Even though in the benchmark there are also three levels of 

refinement, they are probably not completely equivalent to the refinement levels used in the 

present structure solver. This means that the considered coarse grid in the benchmark might 

suit better with the medium level of the present structure solver instead of with the coarse 

one. Therefore, the computation of the relative errors is made only for the finest grid of the 

present structure solver for each of the time step sizes. To determine the relative errors in 

Table 4.5, the “exact result” used is the one given as a reference in Table 4.4 corresponding to 

the use of the finest grid and the smallest size of the time step. 

The obtained relative errors are commented at the end of the structural results section 

together with the errors from the test cases CSM1 and CSM2. 

 

After this time development study carried out for the test case CSM3, the two other time 

independent test cases are analyzed. 

4.1.2. CSM1 

As shown in Table 4.3 this test case and CSM3 consider the exact same parameters for the 

mass and rigidity of the structure. Nevertheless, CSM1 presents the steady state solution. For 

the present structure solver results, the steady state solution will be approximated by the 

mean value of the time dependent solution in CSM3, in order to make the comparison 

possible. 

Table 4.5. CSM3: Relative error of the results 
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As in the previous test case, the results are shown first and the discussion and computation of 
relative errors follow. 

 

CSM1: Vertical displacement of the trailing edge 
[10E-3 m] 

Grid refinement Turek-Hron [16] Structure solver 
Coarse �>�ò�ò�X�ì�î�ò�ï �>�ó�ï�X�ò�ô�ñ�ô 

Medium �>�ò�ò�X�ì�ô�í�ó �>�ò�õ�X�ó�ð�ó�î 
Fine �>�ò�ò�X�ì�õ�ò�ñ �>�ò�ô�X�ò�ì�ô�ï 

Reference �>�ò�ò�X�í�ì 
 

The structure solver results shown in Table 4.6 represent the mean value of the displacement 
for the time dependent solution us�]�v�P���š�Z���� �•�u���o�o���•�š���š�]�u���� �•�š���‰���4�š�A0.005 s. It is possible to see 
how the obtained results are larger in absolute value than those in the benchmark [16]. The 
value given as reference in [16] corresponds to the steady state solution obtained using the 
finest grid. 

As it was explained in the CSM3 discussion of results, these differences are due to the 1D 
simplification made for the structure solver governing equations. The lack of displacement in 
the horizontal direction leads to larger vertical displacements. 

The grid refinement study shows the big dependence on the number of grid points of the 
structure solver results, compared to the ones from the benchmark. The low number of grid 
points used in the present solver, for the three levels of refinement, impedes to get grid 
independence that was achieved in the benchmark. It could only be reachable by continuing 
the grid refinement study for even finer grids. 

For a better understanding of the results and to get an idea of the comparison, it is relevant to 
compute the relative error of the results. 

 

CSM1: Vertical displacement of the trailing edge 
Grid refinement Relative error (%) 

Fine 3,80 
 

Table 4.7 gives the relative error of the structure solver result for the finest grid compared to 
the reference one shown in Table 4.6. As explained before for the CSM3 test case, it only 
makes sense to compute it for the finest grid level, because the levels of refinement defined in 
the structure solver and in the benchmark might not be equivalent one by one. 

 

 

Table 4.6. CSM1 results: Grid refinement study 

Table 4.7. CSM1: Relative error of the results 
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4.1.3. CSM2 

This is the last test case studied for the structural part of the problem and the process is 
exactly the same as in test case CSM1. As in the previous test case, the steady state solution is 
given. So in order to make a comparison, the steady state solution will be approximated by the 
mean values of the oscillating solution obtained using the present structure solver. 

Regarding the structural parameters used in this test case, there is a remarkable difference 
with respect to CSM1 and CSM3. According to Table 4.3, the flexural rigidity chosen for this 
case is four times the one used in the other two test cases, while the specific mass of the plate 
is unchanged in relation to them. Therefore, smaller displacements of the structure are 
expected, but in order to confirm this supposition it is necessary to analyze the results in Table 
4.8 obtained �(�}�Œ���š�Z�����•�u���o�o���•�š���š�]�u�����•�š���‰���4�š�A0.005 s.  

 

 

 

 

 

 

 

As expected, the results in Table 4.8 show much smaller displacements (in absolute value) of 
the trailing edge of the flexible plate than those in Table 4.6. The increase in the rigidity of the 
plate for the same mass implies that a bigger force is needed to have the same displacement. 
Since the gravitational force is the same in both cases, according to Table 4.2, the flexible plate 
experiences smaller vertical displacements. The reference result given in [16] is the one 
corresponding to the finest grid. 

Analyzing both the structure solver and the benchmark results [16] in Table 4.8, the 1D 
simplification assumed for the present structure solver is the cause for larger vertical 
displacements as in the two previous test cases. 

In relation to the grid refinement study made in Table 4.8, the results for the three different 
levels of refinement present smaller differences among them than in the other two cases of 
study. Nevertheless, the relative differences are similar to the ones in the previous test cases. 
It is clear anyway that these differences are still much bigger than the ones in the benchmark, 
which present almost grid independence due to a higher number of grid points along the 
structure. 

For a quantitative comparison of the results, the relative errors are computed in Table 4.9. 

 

CSM2: Vertical displacement of the trailing edge 
[10E-3 m] 

Grid refinement Turek-Hron [16] Structure solver 
Coarse �>�í�ò�X�õ�ñ�ï�ò �>�í�ô�X�ï�ò�ñ�õ 

Medium �>�í�ò�X�õ�ò�ô�ð �>�í�ó�X�ð�ô�í�ï 
Fine �>�í�ò�X�õ�ó�î�ï �>�í�ó�X�í�ô�ì�ï 

Reference �>�í�ò�X�õ�ó 

Table 4.8. CSM2 results: Grid refinement study 
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Again the only level of refinement taken into account to compute the relative error in Table 
4.9 is the finest on, as in test cases CSM1 and CSM3. To determine this relative error, the 
reference value shown in Table 4.8 is used. 

 

Once all the three structural test cases of study are completed it is time for a global overview 
of the results obtained in this section. 

In order to qualify the accuracy of the results thrown by the structure solver, the relative 
errors in Table 4.5, Table 4.7 and Table 4.9 must be analyzed. 

For the time dependent test case CSM3, the relative errors are approximately 7% for the mean 
value and the amplitude of the vertical displacement of the trailing edge, while the frequency 
shows a 3% relative error. When considering the mean value of the stable time dependent 
solution for the vertical displacement in test cases CSM1 and CSM2, the accuracy of the 
structure solver looks to be slightly higher showing a reduction in the obtained relative errors. 
The error goes down to a 4% in CSM1 and to an even lower 1% in the case CSM2, where the 
rigidity of the flexible plate has been increased. 

Therefore and according to all the results obtained and discussed in this section, it is 
reasonable to assume that the accuracy of the structure solver is high enough. So the results 
obtained by using it may be considered as valid. 

 

 

4.2. CFD Tests 

In this section the fluid flow is analyzed not taking into account its interaction with the flexible 
structure. In order to isolate the fluid flow, it is suggested in the benchmark to consider the 
flexible plate as a rigid object by setting very high values for its density and shear modulus, or 
either defining the fluid domain with only fixed boundary conditions along the interface with 
the plate. But the easiest way to do it with the existing method is to �^���]�•���}�v�v�����š�_���š�Z�����•�š�Œ�µ���š�µ�Œ����
solver, so that the pressure difference is computed but not used to calculate the displacement 
of the plate. Therefore, the structure just acts as a fixed submerged body in the fluid flow.  

Three different subtests called CFD1, CFD2 and CFD3 are proposed for this fluid solver 
validation. The setting up of the parameters for all of them is given in [16] and summarized in 
Table 4.10. 

CSM2: Vertical displacement of the trailing edge 
Grid refinement Relative error (%) 

Fine 1,23 

Table 4.9. CSM2: Relative error of the results 
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At this point, it is important to remind the assumptions made for the fluid at the mathematical 
description section for simulating the FSI experiment. First of all, the fluid under consideration 
is a gas (air in particular) to avoid possible numerical problems in the existing method, which is 
made for gases. Nevertheless, the fluid defined by the properties in Table 4.10 is glycerine, 
which is an incompressible fluid. It is assumed that the difference on the fluid choice should 
lead to equivalent results if the Reynolds number is the same in both cases. 

Therefore, the only parameter that must be strictly respected is the Reynolds number. This 
non-dimensional parameter is directly given as an input parameter of the FSI method. The 
characteristic velocity used in the FSI method is the speed of sound, so the non-dimensional 
mean inflow velocity coincides with the definition of the Mach number, and through this non-
dimensional parameter is how it enters the method. 

The Mach number for all the test cases in this section is set to be 0.2, even though the inlet 
velocities and the speed of sound lead to much lower values. If the real values were used, the 
acoustic waves would be reflected several times for a small advance of the flow, which could 
lead to numerical issues and long simulations. The solution based on setting a larger Mach 
number (by an artificial decrease of the speed of sound) should not affect the results, if the 
chosen Mach number respects the incompressible flow regime, i.e. Mach number lower than 
0.3 approximately. Also within this incompressible regime, the fact that the method uses the 
compressible Navier-Stokes equations should not be relevant for the obtained results. 

Due to the different methods of integration in time used in the fluid solver and in the 
benchmark, it might not be possible to use the same time steps for all the simulation cases. 
The non-dimensional parameter representing the time step in the existing method must be 
chosen to respect the stability conditions of the scheme, coming from the viscous terms of the 
equations and from the computation of the Courant number as shown in (3.2). 

The last aspect to clarify before getting started with the simulations is that the results obtained 
using the method are non-dimensional, while the ones given as reference are not. Therefore, it 
is necessary to express �}�v�����}�(���š�Z���u���]�v�š�}���š�Z�����}�š�Z���Œ�[�•���(�}�Œ�u�X��Since the quantities for comparison 
are the lift and drag forces, the easiest way to do this is to compute the lift and drag 
coefficients of the reference results as shown in (4.2), and then compare them to the results 
from the FSI method.  
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Table 4.10. Parameter setting for the CFD tests (Table from [16]) 

(4.2) 
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The symbols that appear in (4.2) are L and D standing for lift and drag forces respectively, �7
% 
�Œ���(���Œ�Œ�]�v�P�� �š�}���š�Z���� �u�����v�� �]�v�(�o�}�Á�� �À���o�}���]�š�Ç�� �(�}�Œ���������Z�� �š���•�š�������•���U�� ���v���� �Œ�� ���v���� ���� ��enoting the density of 
the fluid and the diameter of the cylinder. As a 2D problem the width of the cylinder is 
considered to be equal to one meter. 

First the steady state cases CFD1 and CFD2 are considered, before turning to the time 
dependent case CFD3 at the end of the section. 

 

4.2.1. CFD1 

According to Table 4.10 the Reynolds number is set to be 20 for this simulation. As the fluid 
used is supposed to be air, the Prandtl number and the ratio of specific heats are unchanged 
from the original problem in the upper airways, with values of 1 and 1.4 respectively. A Mach 
number of 0.2 is used following the assumption explained before. 

The grid used for the simulation of the test case is shown in Figure 3.4, and in relation to it, the 
non-dimensional time step �µ�š�]�o�]�Ì������ �]�•�� �4t=0.002, respecting the CFL condition and the stability 
condition derived from the viscous terms of the Navier-Stokes equations in (3.2). The duration 
of the simulation has to be long enough to ensure that the steady state solution is achieved. 

The reference results presented in the benchmark are given in Table 4.11 which is directly 
extracted from [16]. An extensive grid refinement study, with ten different levels of 
refinement, is done to show the almost grid independence of the results in [16]. 

 

 

 

 

 

 

 

 

In order to do the comparison, the reference values from Table 4.11 have to be expressed in 
non-dimensional form by the use of (4.2). 

 

 

Table 4.11. CFD1: Reference results (Table from [16]) 
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Once the reference values for comparison are established, the first results of the present fluid 
solver are obtained. These results are not comparable to the reference values, since they 
indicate problems with the fluid grid that are impeding the solution from reaching the steady 
state. Moreover, at some points of the simulation the computed drag coefficients are negative, 
which contradicts the basic principles of fluid mechanics. It is obvious that the negative drag 
results are wrong, since even zero drag �]�v�����[���o���u�����Œ�š�[�•���‰���Œadox is contradictory.     

In order to analyze the convergence of the solution, it is useful to compute the change in time 
of the conservative variables as shown in (4.3). 
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The symbol U in (4.3) represents a conservative variable in general, showing that the 
�]�v���Œ���u���v�š���]�•�����}�u�‰�µ�š�������]�v���š�Z�����•���u�����Á���Ç���(�}�Œ�����o�o���}�(���š�Z���u���~�Œ�U���Œ�µ�U���Œ�À�����v�����Œ���•�X These changes are 
used to calculate the Euclidean norm of the residual (summing the changes squared of all the 
conservative variables) in (4.4). 
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Once the Euclidean norm is computed for each time step of the simulation, its development in 
time can be plotted to see the tendency of the residual. 

 

 

 

 

 

 

 

 

 

 

 

 Drag and lift coefficients 
  CD CL 

Reference 7,145 0,560 

Table 4.12. CFD1: Non-dimensional reference results 

(4.3) 

 

(4.4) 

 

Figure 4.14. CFD1: Convergence of the solution. Equidistant grid 
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From Figure 4.14 it is possible to see how the Euclidean norm of the residual barely changes 
from the beginning of the simulation and does not tend to a lower value, as it should if the 
steady state solution was reached. By analyzing in more detail each of the increments of the 
conservative variables, it seems that the one which va�Œ�]���•�� �š�Z���� �u�}�•�š�� �]�•�� �4�Œ���X�� �d�Z���Œ���(�}�Œ���U��it is 
interesting to plot the value of this quantity at the last time step for the whole domain. 

 

 

 

 

 

By looking carefully at Figure 4.15, one can see that at the leading edge of the cylinder (defined 
as reference point B in Figure 2.3) the larg���•�š�� �À���o�µ���� �(�}�Œ�� �4�Œ����occurs. It is coherent to assume 
�š�Z���š�� �š�Z���� ���}�v�À���Œ�P���v������ �•�š���P�v���š���•�� ���š�� �š�Z���š�� ���Æ�����š�� �‰�}�]�v�š�� �Á�]�š�Z�� ���� �À���o�µ���� �}�(�� �4�Œ���� �A�ì�X�ì�î�ô�õ, while the 
change of this conservation variable is practically equal to zero in the rest of the domain. 

The problem probably comes from the creation of the grid at the leading and trailing edges of 
the cylinder, where the big jumps in the cell sizes and angles lead to poor metric terms x�{ and 
y�{,. As a consequence of that, the flow results and the computed lift and drag forces are 
affected. The leading edge, where the pressure is largest, seems to be more critical than the 
trailing edge. 

At this point, two possibilities are considered to alleviate the problems caused by the grid at 
both the leading and the trailing edges of the cylinder. On the one hand, a modification on the 
inter-block communication mechanism at the problematic zones would solve the issues caused 
by the jumps in the cell sizes. However, a rearrangement of the grid points in those zones 
could be done, helping in the same way as the first possibility. The solution based on modifying 
the communication mechanism involves some changes to the current inter-block 
communication algorithm, which would require rewriting parts of the original code of the FSI 
method. To avoid that, the solution adopted is the one consisting in a grid modification. 

Due to the constant arc length between neighbor grid points along the cylinder, the sizes of 
the cells in x-direction get smaller when approaching the leading or trailing edges. 
Nevertheless, for the rest of the blocks the grid is equidistant so the size of the cells is 
constant, which leads to big jumps of the cell sizes on both sides of the cylinder. Therefore, it is 
necessary to decrease the size of the cells that are close to the cylinder, which can be done by 
using some clustering functions to accumulate grid points near the cylinder. Moreover, a 
clustering also in y-direction can be useful to get more grid points contained in the boundary 
layer, which is crucial to get accurate results when the Reynolds number gets larger.  

The same clustering mechanism is used for both directions, and considering N grid points the 
two different functions that are used were proposed by Roberts (1971) [20]. One leads to a 
clustering towards the first grid point (4.5) and the other one towards the last grid point (4.6). 

Figure 4.15. �����š���]�o���}�(���š�Z�����À���o�µ���•���(�}�Œ���4�Œ�����•�µ�Œ�Œ�}�µ�v���]�v�P���š�Z�����•�š�Œ�µ���š�µ�Œ�� 
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The subscript i in (4.5) and (4.6) denotes the index of the grid points, and �t�� �]�•�� ���� �‰���Œ���u���š���Œ��
which must be strictly greater than 1.  

For the clustering in the x-direction, �š�Z�����‰���Œ���u���š���Œ���t���]�•���•���o�����š������aiming to match the cell size 
on both sides of the block boundaries situated at the leading and trailing edges. In the case of 
the y-���]�Œ�����š�]�}�v�� ���o�µ�•�š���Œ�]�v�P�U�� �š�Z���� ���Œ�]�š���Œ�]�}�v�� �(�}�Œ�� ���Z�}�}�•�]�v�P�� �t�� �]�•�� �š�}�� �������µ�u�µ�o���š���� ���� �����Œ�š���]�v�� �v�µ�u�����Œ�� �}�(��
grid points within the boundary layer, but since its thickness is not known along the cylinder, it 
ends to be a matter of trial and error. 

After implementing the mentioned modifications in the fluid mesh of the existing method, the 
obtained computational domain is shown in Figure 4.16. Considering the three vertical inter-
block boundaries (for the whole height of the channel) �(�Œ�}�u���o���(�š���š�}���Œ�]�P�Z�š�U���š�Z���� �À���o�µ���•�� �}�(�� �š�Z���� �t��
parameter are 1.0185, 1.0223 and 1.346. �d�Z���� �À���o�µ���� �}�(�� �t�� �µ�•������ �(�}�Œ�� �š�Z���� ���o�µ�•�š���Œ�]�v�P�� �]�v�� �š�Z���� �Ç-
direction is 1.1. 

 

 

 

 

 

 

 

 

It is possible to observe the influence of the clustering in the grid by looking at Figure 4.16, 
where an accumulation of grid points is taking place at the surroundings of the cylinder and at 
the middle of the channel. �d�Z���� �t�� ���Z�}�]������ �(�}�Œ�� �š�Z����rightmost vertical inter-block boundary has 

Figure 4.16. Computational domain using grid clustering 

(4.5) 

 

(4.6) 
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some implications. The first grid spacing of the last column of blocks is smaller than the one 
needed to match the clustering. Therefore, a reduction in the number of grid points of the last 
two blocks is needed.  The implications on the results should not be relevant, since the flow at 
the end of the channel does not require such a big amount of grid points. 

So the number of grid points along the x-direction of the two blocks behind the flexible 
structure decreases to one quarter of its previous value. This implies that the size of the new 
domain is 111 x 41, i.e. 111 and 41 grid points in the x- and y-directions, respectively. Both 
Figure 3.4 and Figure 4.16 can be analyzed together to get a global view of the modifications 
made to the computational domain. 

Due to the clustering, the grid spacing in both directions is reduced considerably in some 
regions of the domain, which has direct implications on the choice of the time step size in 
order not to violate the stability conditions of the scheme presented in (3.2). By using very 
small time steps, the stability issues of the scheme are avoided. Nevertheless, the smaller the 
�4�š��gets the longer the simulation takes. Therefore, it is convenient to be careful with the 
choice of the time step size to get a stable solution for as low computational costs as possible. 

For the simulation of test case CFD1 using the new grid, the non-dimensional time step 
�•���o�����š�������]�•���4�š�A�ì�X�ì�ì�ì�í�ñ�X Once the simulation is done, the results obtained are the following for 
the time history of lift and drag coefficients, cf. Figure 4.17.  

 

 

 

 

 

 

 

 

 

 

 

The results presented in Figure 4.17 show that the use of the new grid alleviates the problems 
mentioned for the equidistant grid, but the solutions for the lift and drag coefficients are still 
not accurate enough compared to the reference steady state solutions, represented by the 
dashed lines. 

Figure 4.17. CFD1: Clustered grid 
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In order to analyze in detail the results obtained from the fluid solver, the following plots show 
the distribution of different physical quantities over the whole domain at the last time step of 
the simulation. 

 

 

 

 

 

It is important to remind that the solutions obtained from the fluid solver are in a non-
dimensional perturbation form. As expected, Figure 4.18 shows how the maximum value for 
the gauge pressure takes place in the left side zone close to the cylinder, since its leading edge 
is a stagnation point. The pressure starts decreasing from there along the cylinder surface due 
to the flow acceleration there. It is also shown how the pressure is reduced when approaching 
the end of the channel to respect the zero gauge pressure condition at the outlet. 

In order to focus the analysis on the surroundings of the structure, Figure 4.19 presents the 
non-dimensional gauge pressure profile along the cylinder surface. The mentioned pressure is 
defined in (4.7): 
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The superscript * in (4.7) denotes dimensional quantities and the subscript 0 refers to 
stagnation values.  

 

 

 

 

 

 

 

 

 

  

 

Figure 4.18. CFD1: Pressure distribution 

Figure 4.19. CFD1: Pressure profile along the cylinder surface 

(4.7) 
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It is possible to observe in Figure 4.19 the difference in value between the pressure along the 
lower and upper surfaces represented by the red and blue lines, respectively. The lower 
pressure along the upper surface produces the suction to generate the lift force.   

With regard to the flow velocity, Figure 4.20 gives the distribution of its horizontal component 
in a non-dimensional perturbation form at the whole domain, also for the last time step of the 
simulation. 

 

  

 

 

Figure 4.20 shows the acceleration of the flow surrounding the cylinder in concordance with its 
pressure distribution presented in 4.19. The acceleration is bigger above the cylinder as it 
could be deduced from Figure 4.19. It is also possible to see how the horizontal velocity goes 
to zero at the channel walls and the fluid-structure interface to respect the no-slip boundary 
conditions. The parabolic velocity profile can be observed at the inlet following the specified 
boundary condition. Moreover, the velocity is shown to go up near outflow. 

Finally another plot is added to give some information about the z-component wz of the 
vorticity, over the entire computational domain, cf. Figure 4.21. The definition of wz is given in 
(4.8).  
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In (4.8) u is the velocity vector, while u and v refer to its horizontal and vertical components, 
respectively. 

 

 

 

 

In Figure 4.21, wz above the body is shown to be negative, while it is positive below it. 
Moreover, it is possible to see some kinks right at the boundaries of the blocks containing the 
cylinder. This indicates that the grid is non-smooth in those zones. 

After this analysis, it seems that the fluid solver simulations do reflect correct physical 
phenomena. However, as it was mentioned before, the numerical results do not show high 
accuracy compared to the reference given in the benchmark. 

  

Figure 4.20. CFD1: Horizontal velocity distribution �@�Q
L
�è�Û

�Ö�, �Û
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Figure 4.21. CFD1: Vorticity distribution 

(4.8) 
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In order to analyze the time step size choice, one more simulation is carried out using a 
different value for the non-dimensional �4�š�X The numerical results for lift and drag obtained in 
both simulations are presented in Table 4.13 

 

 Drag and lift coefficients 
  CD CL 

�4�š=0,00025 3,407 0,209 
�4�š=0,00015 5,138 0,234 

Reference 7,145 0,560 
 

By looking at the results shown in Table 4.13, the lack of accuracy is confirmed as none of the 
relative errors is lower than a 30%. In Table 4.13, the reference results are the ones computed 
in Table 4.12 as the non-dimensional values of the reference results given in Table 4.11. 
Nevertheless, the most important implication of Table 4.13 is that there is a time step 
influence on the results, which should not happen since the test case CFD1 represents a steady 
state. Therefore, even if this grid leads to better results than the equidistant one, the steady 
state solution is not being reached yet. 

Two alternatives are considered at this point in order to solve the grid problems that seem to 
remain. The first one consists on a drastic modification of the grid surrounding the structure by 
using another grid type. A possible choice could be an O-grid where some grid lines would 
surround the whole body at increasing distances, while other grid lines starting at the surface 
of the body would cross them in locally perpendicular directions. 

Despite the increase in smoothness of this kind of grid near the structure, other issues would 
appear when trying to match the last grid lines to the walls of the channel and to the vertical 
boundaries of the rest of unchanged blocks. Furthermore, it would be necessary to rewrite the 
code for the grid creation. So there are several reasons to turn this possibility down.  

The second alternative is to keep the type of clustered grid unchanged while increasing the 
number of grid points in both directions. The low number of grid points along the cylinder 
surface of the current grid might explain the lack of accuracy of the results, so a grid 
refinement could be the solution. Moreover, by looking carefully at Figure 4.19, Figure 4.20 
and Figure 4.21 some discontinuities can be noticed right at the leading and trailing edges of 
the cylinder. Therefore, it is possible that the current grid is just too coarse, and the grid 
problems could be alleviated with the mentioned grid refinement. 

Hence, the number of grid points is doubled in both x and y directions leading to a finer grid. 
The modified number of grid points in the vertical direction is 41 for all the blocks. The 
modified numbers of grid points in the horizontal direction, considering the four columns of 
blocks starting from the left are 29, 31, 69 and 95, respectively. Then the size of the refined 
grid is 221 x 81, i.e. 221 and 81 grid points in the x- and y-directions, respectively. 

�d�Z�����t���‰���Œ���u���š���Œ�•���]�v���~�ð�X�ñ�•�����v�����~�ð�X�ò�•���Œ���‹�µ�]�Œ���������v���Á���•�š�µ���Ç���]�v���}�Œ�����Œ���š�}���•���o�����š them properly for the 
refined grid. For the three vertical (considering the whole channel height) inter-block 

Table 4.13. CFD1: Time step influence 
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���}�µ�v�����Œ�]���•�� �(�Œ�}�u�� �o���(�š�� �š�}�� �Œ�]�P�Z�š�U�� �š�Z���� �À���o�µ���•�� �}�(�� �š�Z���� �t�� �‰���Œ���u���š���Œ�� ���Œ���� �í�X�ì�ì�ô�ò�U�� �í�X�ì�ì�õ�ô�� ���v���� �í�X�ñ�î�ì�ô�X��
�d�Z�����t��parameter used for the clustering in the y-direction is unchanged, with a value of 1.1. 

After the mentioned modifications are carried out, the resulting grid is obtained and shown in 
Figure 4.22. 

 

 

 

 

 

 

 

 

The changes on the new grid with respect to the previous one can be noticed by comparing 
Figure 4.16 and Figure 4.22. The high concentration of grid points shown in the surroundings of 
the cylinder and the first half of the flexible structure should, at least, improve the accuracy of 
the fluid solver results. 

Nevertheless and as it was explained before, the big reduction on the grid spacing has direct 
implications on the time step needed to respect the stability conditions presented in (3.2). For 
the simulation of this test case using this refined grid, the method only accepts non-
dimensional time steps smaller �š�Z���v�� �4�š�A10-5, and the end time of the simulation should be 
around 200 to reach the steady state. Moreover, due to the doubling of the number of grid 
points in both directions, now the number of operations is multiplied by four at every time 
step. In other words, the simulations get extremely long. 

After a few unsuccessful trials, it is confirmed that the current computational capacity level is 
not high enough to get solutions in reasonable times. Therefore, a higher computer 
performance is required in order to obtain reliable results from those simulations, and to be 
able to finish the validation of the fluid solver by comparison with the benchmark reference 
results.   

 

4.2.2. CFD2 

The only fluid parameter that needs to be changed in the method from the ones used in test 
case CFD1 is the Reynolds number, which is set to be 100 as specified in Table 4.10. The rest of 
the fluid parameters (Mach number, Prandtl number etc) are unchanged to be coherent with 
the assumptions made at the beginning of the CFD Tests section. 

Figure 4.22. Computational domain using refined grid clustering 
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Aiming to confirm the need for higher computer performance, the too coarse grid presented in 
Figure 4.16 is used as in test case CFD1, to see if the lack of accuracy in the results is evident 
again. In this case, the non-dimensional time step used is equal to 0.005 in order not to violate 
the stability conditions of the scheme. 

The reference results after a grid refinement study are given in Table 4.14, which is directly 
taken from [16]. As explained before, these reference results have to be made non-
dimensional by the use of (4.2) in order to be comparable, and such non-dimensional 
reference results are computed in Table 4.15. 

 

 

 

 

 

 

 

 

 
Drag and lift coefficients 

 
CD CL 

Reference 2,734 0,211 
 

The obtained results are shown in Figure 4.23. 

 

 

 

 

 

 

 

 

 

 

Table 4.15 CFD2: Non-dimensional reference results 

Table 4.14. CFD2: Reference results (Table from [16]) 

Figure 4.23. CFD2: Clustered grid 
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The numerical results from the fluid solver are presented in Table 4.16 together with the 
reference ones. 

 

 Drag and lift coefficients 
  CD CL 

�4�š=0,0005 2,211 0,065 

Reference 2,734 0,211 
 

As expected, the comparison shows that the fluid solver results approach the reference ones, 
but there is a lack of accuracy that leads to a relative error of 20% for the drag coefficient and 
even higher for the lift coefficient. As explained in test case CFD1, a higher computer 
performance should solve these problems of accuracy. 

 

4.2.3. CFD3 

The last of the fluid dynamics test cases describes a time dependent state. The increase of the 
Reynolds number up to 200, shown in Table 4.10, gives rise to a change in the solution from 
the steady state already seen in CFD1 and CFD2 to stable oscillations. The assumptions made 
for the Mach number and the rest of the fluid parameters are the same as in the two previous 
test cases.  

In order to analyze if the lack of accuracy already seen in the other tests gets bigger for a time 
dependent solution, the same coarse clustered grid from Figure 4.16 is utilized. In this case the 
stability conditions in (3.2) force the time step to be smaller than 0.002. 

The development in time of the reference results is described in [16] by Table 4.17, where 
both a grid refinement and a time step study are done. 

 

 

 

 

 

 

 

 

The reference mean values of the oscillations are made non-dimensional, obtaining values of 
2.197 and -0.059 for the drag and lift coefficients respectively.  

Table 4.16. CFD2: Numerical results 

Table 4.17. ���&���ï�W���Z���(���Œ���v�������Œ���•�µ�o�š�•���(�}�Œ���4�š�A�ì�X�ì�í���•�����v�����4�š�A�ì�X�ì�ì�ñ���• (Table from [16]) 
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As shown in Figure 4.24, the flow results are poor. Apart from the repeated lack of accuracy in 
the mean values of lift and drag, the results obtained do not show the stable oscillations that 
are expected according to Table 4.17. Therefore, the grid problems discussed for CDF1 and 
CFD2 are even more evident for this case with a higher Reynolds number, so the need for 
higher computer performance is confirmed in order to get better results. 

 

 

4.3. FSI Tests 

This final section of the whole results chapter aims to validate the existing method itself, unlike 
the two previous parts where both the structure and the fluid solvers of the method were 
studied separately. Therefore, the FSI test cases must take into account the fluid-structure 
interaction and analyze its effects on the structure and fluid dynamics. 

All the assumptions made for the fluid and structural parts apply in this section as well, in 
order to be consistent with the results already obtained. Hence, for the FSI test cases an 
infinitely thin flexible structure is submerged in an air flow. 

It is important to remind that the existing method uses the governing equations of fluid and 
structure in a non-dimensional formulation. Therefore, the differences of the benchmark 
configuration should not affect the results if the non-dimensional input parameters are 
appropriately selected to achieve an equivalent case. 

For the FSI tests the ratio between the fluid and structure densities is specified in the 
benchmark, so this quantity must be conserved by the parameters used in the method. As the 

Figure 4.24. CFD3: Clustered grid 
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density of air is known, this ratio gives the appropriate density of the flexible structure �Œs for 
the method. 

The non-dimensional governing equation for the structure used in the method can be divided 
by the non-dimensional specific mass of the plate:  
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In the resultant equation (4.9), the ratio between the non-dimensional flexural rigidity and 
specific mass of the flexible structure is the quantity that must be matched to the same ratio 
computed for the benchmark values, in order to get equivalent cases. 
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�^�]�v�������š�Z�����Œs is now known, the M can be computed by using (2.13) and making the result non-
dimensional. The right hand side of (4.10) can be calculated with the values given in the 
benchmark, and its multiplication by the just computed M gives the appropriate value of B. 
The use of these input parameters in the existing method leads to FSI test cases which are 
equivalent to those described in the benchmark in Table  4.18 [16].  

 

 
 

 

 

 

The settings described in Table 4.18 lead to a steady state solution for the test case FSI1 and to 
periodic solutions for FSI2 and FSI3.  

In order to get coherent results from the simulation of all these FSI test cases, a very precise 
coordination among fluid and structure solvers is required, so both of them must show a 
correct and accurate performance. 

Therefore, the end of the validation process of the present FSI method can only be reached 
once the problems of accuracy of the fluid part are solved. 

 

 

 

 

(4.9) 

 

(4.10) 

 

Table 4.18. Parameter setting for the FSI tests (Table from [16]) 
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5. Conclusions and outlook 

The purpose of this final section is to explain the main conclusions derived from the 
development of the project work. In addition, an outlook for further investigation is presented. 
 

5.1. Conclusions 

According to the title of the specialization project, an in-depth investigation of the FSI method 
has been carried out. The separate analyses of both the structure and fluid solvers provided 
the necessary results to draw some conclusions. 

In relation to the structural part, it is clear that the 1D simplification of the structure 
movement has an important influence on the results. By neglecting the horizontal 
displacement of the plate, the vertical one gets slightly bigger and so does the corresponding 
oscillation period. When comparing with the reference results, the low relative errors obtained 
are acceptable, taking into account the lower number of grid points used along the structure. 
The FSI method adopts the Euler-Bernoulli beam model for the structure, which is considered 
infinitely thin in the domain discretization. Nevertheless, in the benchmark the flexible 
structure has a finite thickness and it is modeled by giving its Cauchy stress tensor by the 
constitutive law for St. Venant-Kirchhoff material. Despite those simplifications and 
differences, by looking at the comparison of results, it is reasonable to consider them as valid. 

When studying the fluid part, several assumptions are made for the fluid flow. Since the 
existing method is originally created to work with gases, the fluid is considered to be air 
instead of glycerine as specified in the benchmark. Moreover, the compressible Navier-Stokes 
equations are adopted in the FSI method unlike in the computation by Turek and Hron [16], 
where they are incompressible. By choosing the appropriate non-dimensional fluid parameters 
and keeping the Mach number low, the tendency of the results for all simulations looks 
correct. Nevertheless, the obtained relative errors are not low enough. This lack of accuracy of 
the results is due to grid problems near the grid lines in the y-direction through the leading and 
trailing edges of the cylinder. Either a change of grid type or a substantial grid refinement is 
needed in order to improve the accuracy of the results. 

The correct and precise performance of the whole FSI method is equally dependent on both 
the fluid and the structure solvers. Therefore, the complete validation of the method cannot 
be achieved until the accuracy problems shown in the fluid part are solved. 

 

5.2. Outlook 

As an outlook and regarding the conclusions, further development of this project work should 
focus first on improving the accuracy of the fluid solver results. For doing so, two possibilities 
were proposed when discussing the results. 
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On the one hand, the use of an O-grid in part of the computational domain can be expected to 
alleviate the grid problems in the surroundings of the structure. This possibility requires re-
writing the part of the original code where the grid is created. Moreover, the grid 
discontinuities move now to the walls of the channel which might affect the correct definition 
of the boundary conditions there. 

On the other hand, a full grid refinement study can be done to analyze if the lack of accuracy is 
due to discontinuities at the leading edge of the structure or if it is just a matter of a too coarse 
grid. The challenge with this possibility is now related to computational costs, so a relatively 
high computer performance is needed. 

Once the problems are solved, the following steps involve simulating correctly the FSI test 
cases and then the validation of the method can be completed. 

To sum up, some improvements of the method could be carried out in relation to the inter-
block communication mechanism. The grid problems caused by the jumps in cell sizes and 
angles might be alleviated by a reduction of the inter-block communication. The idea is to stop 
using ghost points at the block boundaries where the communication is allowed, in order to 
avoid computing across points with big differences in grid spacings on both sides. The points at 
the block boundaries are considered as belonging to both blocks, allowing each of them to 
have information about the other and maintaining the current communication.  
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