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Background and objective

Opposed to body-fitted grid methods, the surface of a body intersects the grid lines in an immersed
boundary method (IBM). For the surface boundary of the body is immersed in a Cartesian grid. The
solid wall boundary conditions can be imposed by assigning values to ghost points inside the solid
body adjacent to the immersed boundary such that the ghost point values reflect the presence of the
body surface. In IBM, the difficult task of generating body-fitted grids is replaced by flagging fluid,
ghost and solid points. For moving bodies, this flagging in IBM has to be done dynamically. We
investigate a moving IBM for compressible viscous flow starting from an existing IBM code for
stationary bodies.

The goal of the project is to implement, verify and validate the IBM for moving bodies in 2D
compressible viscous flow.

The following tasks are to be considered:

1. to get a basic physical understanding of viscous compressible flow, its mathematical
description and its numerical solution by immersed boundary methods (IBMs),
2. to extend an IBM for stationary bodies to moving bodies for the 2D compressible Navier-

Stokes equations,
3. to implement that moving IBM into an existing IBM 2D compressible Navier-Stokes code for

stationary bodies,

4. to verify and validate the new moving IBM for 2D compressible viscous flow,

5. to write a scientific report.

The project work comprises 15 ECTS credits.
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The work shall be edited as a scientific report, including a table of contents, a summary in
Norwegian, conclusion, an index of literature etc. When writing the report, the candidate must
emphasise a clearly arranged and well-written text. To facilitate the reading of the report, it is
important that references for corresponding text, tables and figures are clearly stated both places.

By the evaluation of the work the following will be greatly emphasised: The results should be
thoroughly treated, presented in clearly arranged tables and/or graphics and discussed in detail.

The candidate is responsible for keeping contact with the subject teacher and teaching supervisors.

Risk assessment of the candidate's work shall be carried out according to the department's procedures.
The risk assessment must be documented and included as part of the final report. Events related to the
candidate's work adversely affecting the health, safety or security, must be documented and included
as part of the final report. If the documentation on risk assessment represents a large number of pages,
the full version is to be submitted electronically to the supervisor and an excerpt is included in the
report.

According to “Utfyllende regler til studieforskriften for teknologistudiet/sivilingenigrstudiet ved
NTNU” § 20, the Department of Energy and Process Engineering reserves all rights to use the results
and data for lectures, research and future publications.

The report shall be submitted to the department via Blackboard.

Submission deadline: 21 December 2017.
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Abstract

In this report a ghost-point immersed boundary method for the compressible Navier-Stokes
equations using a higher order summation by parts operator is described. The implemen-
tation of isothermal boundary conditions at steady and moving immersed boundaries is
described and validated for stationary cylinders in laminar cross flow. The method shows
good capability to describe the isothermal boundary conditions for stationary cylinders.
A potential improvement of the boundary layer approximation for the pressure boundary
condition is described. A convergence study showed second order convergence for flow
around a stationary cylinder at Re=100. Simulations with oscillating cylinder indicate that
a finer resolution is required for the description of heat transfer on moving bodies.

The figure on the title page is given in figure (5.7) in the report.
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